Analysis-of-marginal-Tail-Means (ATM): a robust method for discrete black-box optimization

20 Oct 2018  ·  Mak Simon, Wu C. F. Jeff ·

We present a new method, called Analysis-of-marginal-Tail-Means (ATM), for effective robust optimization of discrete black-box problems. ATM has important applications to many real-world engineering problems (e.g., manufacturing optimization, product design, molecular engineering), where the objective to optimize is black-box and expensive, and the design space is inherently discrete... One weakness of existing methods is that they are not robust: these methods perform well under certain assumptions, but yield poor results when such assumptions (which are difficult to verify in black-box problems) are violated. ATM addresses this via the use of marginal tail means for optimization, which combines both rank-based and model-based methods. The trade-off between rank- and model-based optimization is tuned by first identifying important main effects and interactions, then finding a good compromise which best exploits additive structure. By adaptively tuning this trade-off from data, ATM provides improved robust optimization over existing methods, particularly in problems with (i) a large number of factors, (ii) unordered factors, or (iii) experimental noise. We demonstrate the effectiveness of ATM in simulations and in two real-world engineering problems: the first on robust parameter design of a circular piston, and the second on product family design of a thermistor network. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Methodology

Datasets


  Add Datasets introduced or used in this paper