Consistent estimation of dynamic and multi-layer block models

31 Oct 2014  ·  Qiuyi Han, Kevin S. Xu, Edoardo M. Airoldi ·

Significant progress has been made recently on theoretical analysis of estimators for the stochastic block model (SBM). In this paper, we consider the multi-graph SBM, which serves as a foundation for many application settings including dynamic and multi-layer networks. We explore the asymptotic properties of two estimators for the multi-graph SBM, namely spectral clustering and the maximum-likelihood estimate (MLE), as the number of layers of the multi-graph increases. We derive sufficient conditions for consistency of both estimators and propose a variational approximation to the MLE that is computationally feasible for large networks. We verify the sufficient conditions via simulation and demonstrate that they are practical. In addition, we apply the model to two real data sets: a dynamic social network and a multi-layer social network with several types of relations.

PDF Abstract
No code implementations yet. Submit your code now


Methodology Social and Information Networks Statistics Theory Physics and Society Statistics Theory


  Add Datasets introduced or used in this paper