Fast sampling from $β$-ensembles

4 Mar 2020  ·  Guillaume Gautier, Rémi Bardenet, Michal Valko ·

We study sampling algorithms for $\beta$-ensembles with time complexity less than cubic in the cardinality of the ensemble. Following Dumitriu & Edelman (2002), we see the ensemble as the eigenvalues of a random tridiagonal matrix, namely a random Jacobi matrix... First, we provide a unifying and elementary treatment of the tridiagonal models associated to the three classical Hermite, Laguerre and Jacobi ensembles. For this purpose, we use simple changes of variables between successive reparametrizations of the coefficients defining the tridiagonal matrix. Second, we derive an approximate sampler for the simulation of $\beta$-ensembles, and illustrate how fast it can be for polynomial potentials. This method combines a Gibbs sampler on Jacobi matrices and the diagonalization of these matrices. In practice, even for large ensembles, only a few Gibbs passes suffice for the marginal distribution of the eigenvalues to fit the expected theoretical distribution. When the conditionals in the Gibbs sampler can be simulated exactly, the same fast empirical convergence is observed for the fluctuations of the largest eigenvalue. Our experimental results support a conjecture by Krishnapur et al. (2016), that the Gibbs chain on Jacobi matrices of size $N$ mixes in $\mathcal{O}(\log(N))$. read more

PDF Abstract


Computation Probability 60K35 (Primary) 65C40, 60B20, 33C45 (Secondary)


  Add Datasets introduced or used in this paper