Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization

18 Nov 2020  ·  Nicola Branchini, Víctor Elvira ·

Auxiliary particle filters (APFs) are a class of sequential Monte Carlo (SMC) methods for Bayesian inference in state-space models. In their original derivation, APFs operate in an extended state space using an auxiliary variable to improve inference. In this work, we propose optimized auxiliary particle filters, a framework where the traditional APF auxiliary variables are interpreted as weights in an importance sampling mixture proposal. Under this interpretation, we devise a mechanism for proposing the mixture weights that is inspired by recent advances in multiple and adaptive importance sampling. In particular, we propose to select the mixture weights by formulating a convex optimization problem, with the aim of approximating the filtering posterior at each timestep. Further, we propose a weighting scheme that generalizes previous results on the APF (Pitt et al. 2012), proving unbiasedness and consistency of our estimators. Our framework demonstrates significantly improved estimates on a range of metrics compared to state-of-the-art particle filters at similar computational complexity in challenging and widely used dynamical models.

PDF Abstract
No code implementations yet. Submit your code now




  Add Datasets introduced or used in this paper