Vector autoregressive (VAR) models are widely used for causal discovery and forecasting in multivariate time series analyses in fields as diverse as neuroscience, environmental science, and econometrics. In the high-dimensional setting, model parameters are typically estimated by L1-regularized maximum likelihood; yet, when applied to VAR models, this technique produces a sizable trade-off between sparsity and bias with the choice of the regularization hyperparameter, and thus between causal discovery and prediction... (read more)
PDF Abstract