Testing for Global Network Structure Using Small Subgraph Statistics

2 Oct 2017  ·  Chao Gao, John Lafferty ·

We study the problem of testing for community structure in networks using relations between the observed frequencies of small subgraphs. We propose a simple test for the existence of communities based only on the frequencies of three-node subgraphs... The test statistic is shown to be asymptotically normal under a null assumption of no community structure, and to have power approaching one under a composite alternative hypothesis of a degree-corrected stochastic block model. We also derive a version of the test that applies to multivariate Gaussian data. Our approach achieves near-optimal detection rates for the presence of community structure, in regimes where the signal-to-noise is too weak to explicitly estimate the communities themselves, using existing computationally efficient algorithms. We demonstrate how the method can be effective for detecting structure in social networks, citation networks for scientific articles, and correlations of stock returns between companies on the S\&P 500. read more

PDF Abstract
No code implementations yet. Submit your code now


Methodology Social and Information Networks Statistics Theory Applications Statistics Theory


  Add Datasets introduced or used in this paper